If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-8k-36=0
a = 1; b = -8; c = -36;
Δ = b2-4ac
Δ = -82-4·1·(-36)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{13}}{2*1}=\frac{8-4\sqrt{13}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{13}}{2*1}=\frac{8+4\sqrt{13}}{2} $
| 7(x-10)=5(x+2 | | 6x-32+2x=-6 | | 7x-(x+4)=2x+8 | | (q/2)+(6/7)=(7q+12/14) | | (b^2-3b)^2-14(b^2-3b)+40=0 | | x-7=5/6(x+3) | | 2/3(6x+9)=-7x+3x | | 4x+7+7x-3=180 | | X2+26x-120=0 | | 64c^2+3=4 | | 20(6^-3t)=15 | | 8x2+7x−1=0 | | 6m/4=-12 | | −(x)^2−18x−79=0 | | -6x+18=7-(4x+9 | | t=t^2+11t+28 | | 4-(3x+8)+3x=5x | | 3x+(2x+40)=705 | | 9.77/6.48=5.76/x | | 7x-2x+5=15 | | 10k-7=213-5k | | y=(.25)(8)+8 | | 456.70=170+1.22x | | 2(t-2)-3(4t-3)=11-5(6t+5) | | 9.77/6.48=5.76/n | | 7a-3(a+1)=2(a-2) | | -103+x=-9x+37 | | 2x+3+2x+4=24 | | y=(.25)(2)+8 | | 4(x+6)-6(2)=2 | | t/4-1/3=t+2/8 | | 4.48*10^-13=0.9+2x+x |